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Abstract

Here, we present Bevol, an in silico sequence evolution simulator that can test the effect of
selective pressure on genome size. The simulator is based on artificial populations with single
strand chromosomes using binary genetic code. Selective pressure is defined as a single parameter
k that users can alter to simulate different evolutionary scenarios. Arbitrary cellular processes and
proteins are defined to calculate fitness from parameter k. The resulting simulations showed that
populations under high selective pressure had a larger genome size compared to those with low
selective pressure. Although results revealed that populations with low selective pressure exhibited
a decrease in genome size over the course of evolution, in some cases populations with high selective
pressure had minimal change in genome size.

1 Introduction

Understanding genome evolution is essential to expanding our knowledge of speciation, gene expres-
sion, and many more insights to how different species have evolved over time. In particular, the field
of bacterial evolution is a unique field in evolutionary biology. More specifically, bacterial species are
often the ad hoc species for studying genomic evolution for their abilities to evolve and reproduce
quickly. However, the characteristics that make bacterial evolution unique also poses in addition to
recreating their environmental conditions make it a challenge in modeling and understanding their
evolution. Furthermore, modeling bacterial evolution in wvitro can be extremely resource and time
consuming, hence we turn to in silico sequence evolution experiments.

Examining the comparative genomics of oceanic bacterial species and endosymbionts is an interesting
challenge in particular as the genomes of these species have undergone reductive evolution despite
living in widely variable environments. Our in silico platform can allow us to simulate these enviro-
ments while examining the effects on the bacterial genomes. Current in silico platforms like Aevol
have shown initial results for comparing reductive evolution in two simulated “species” in variable
enviroments [1]. We expand on their in silico application by comparing this effect in two different
simulated “species” where one has a starting genome size on the twice the size of the other and further
additional environments.

Overall, our goal is create a platform, Bevol, that simulates sequence evolution of artificial organisms,
and allow for in silico experimentation of different evolutionary scenarios. Creating this in silico plat-
form will be important for analyzing individual effect of evolutionary factors (e.g. selection strength)
on a population of simulated bacterial organisms. Our bevol platform will follow the structure of aevol
by simulating the variation-reproduction cycle with reasonable simplifications as described by Batut et
al. in 2013 [1]. For the remainder of this paper, we will go into detail about our methodology for the
creation of this platform. With aforementioned approach towards testing sequence evolution in silico,
we will also scrutinize simplifications of the system we are modeling, and compare these with aevol.

2 Methods

2.1 Overview

Closely following the methods used by Batut et al[l]), our simulator will follow the steps of tran-
scription, translation, phenotypic computation, selection and mutation that constitute one simulator
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Figure 1: Overview of the protocol used for developing Bevol

generation of sequence evolution. Each artificial organism will consist of a single chromosome with
binary nucleotides containing coding and noncoding regions. We transcribe and translate each genome
into a set of arbitrary “cellular process” ranging from 0.0 to 1.0. Fitness is measured by comparing
the phenotype represented by f, of each individual to an arbitrary phenotype needed to survive the
pre-determined environment f.. Selection will occur by drawing from a multinomal distribution with
parameters defined by the fitnesses such that each generation has constant size N. Reproduction of
the N selected individuals is asexual. When a chromosome is replicated, it can undergo various types
of mutations occurring randomly at pre-defined rates. We can adjust parameters including mutation
rates, and f. to observe and explain genome shrinkage. Every generation, the set of individuals are
replaced by a completely new set of offsprings such that the same population size is constant through-
out. This helps in observing the effect of selection over multiple bacterial generations in the span of
just a few simulator generations due to preferential selection of only the best adapted individuals. The
complete methodology is depicted as a flowchart in Fig.1.

2.2 Protocol
2.2.1 Transcribing and Translating DNA code to protein

Initially, the genome will be randomly generated with at least one coding region. A loose form of
transcription will occur between 22 bp promoters and stop codons. We can identify transcripts by
the presence of promoters and terminators, following which an expression level is assigned to each
transcript, such that e =1 — 1++W where d represents the hamming distance between the promoter
and a pre-defined consensus. The artificial genetic code will be used to sequentially translate each of
3 bp codon into one of 6 possible amino acids M0, M1, W0, W1, HO, H1, or the start or stop codon.
This sequence of amino acids will then be used to compute the phenotypic contribution based on the
cellular process that each protein is involved in.

Given the sequence of amino acids, we will calculate m, w, and h, where the protein may be rep-
resented as a triangle graph as a function of these values. m represents the mean ”cellular process”
of the protein, w represents the range of pleiotropy that this protein exhibits, and h represents the
efficiency of the protein. In computational terms, the codons form the Gray codes of the three param-
eters m, w, and h. For example, if the amino acid sequence is M1,HO,W1,MO0,H1, then the Gray code
for m is 10, for w is 1, and for A is 01. w is then normalized by multiplying by w * g5=ez where n,, is
the number of WO or W1 in the sequence; m is normalized similarly between 0 and 1 and h between -1
and 1. With these values of m, w, and h defining each protein, the global phenotype of the individual
is calculated.

2.2.2 Decoding phenotype from proteins

Each protein could be responsible for several cellular processes, which can be defined by a certain degree
of possibility for each process, represented as f;(x), where i represents a particular protein, and z is the



cellular process. By using a piecewise-linear distribution over the triangles and its characteristic m, w,
and h, obtained from the previous step, we can calculate a series of these f;(z) values. Given the set of
phenotypic contributions from each protein, the global functional capabilities of a particular cellular
process over multiple proteins is calculated as f,(z) = maz(min(}_; fi(z),1) — min(3_; f;(2),1),0),
where f; is the possibility distribution of the i-th activator protein with h > 0, and f; is the possibility
distribution of the j-th inhibitory protein with h < 0.

2.2.3 Computing Fitness

Fitness is calculated relative to an ideal environment with an possibility distribution, fg, for each

cellular process. This is considered to be an optimal set of values where the organisms are free to

reproduce under no selective pressure, and is preset at the beginning of the simulation, by sampling

from a sum of three gaussian distributions. The fitness is then obtained by calculating the difference

between optimal and actual degree of possibility for each cellular process and summing over them all
1 .

as: g = fo |fe — fpl, where g represents the gap between actual and optimal values.

2.2.4 Selection
The gap function represents the adaptive capability of an organism. So, this can help with calculating
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selective pressure of the environment and drives which individual is capable of reproducing the most
under that coeflicient of selection. From this, the number of offsprings from a particular organism can

be determined by sampling from a multinomial distribution as,

the reproductive strength of an organism as where k is the external factor deciding the
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2.2.5 Reproduction with Mutation

On every round of reproduction, various types of mutations can occur, that include point mutation,
small and large insertions, small and large deletions, duplication and translocations. Each of these
seven types can be considered to have a per-position mutation rate. The number of mutations for each
type could be drawn from independent uniform distributions, except for large deletions and transloca-
tions which is drawn from a Binomial Law.

Going into detail, for a point distribution the binary code for a randomly selected position is in-
verted, whereas for small insertions and deletions, a random sequence of 1-6 bp is inserted/deleted at
a random position. Large deletions is different from small deletions where a larger sequence is deleted
(around 15-20 bp). Lastly, for duplication and translocation, s section of 15-20 bp sequence that is
randomly chosen is moved or copied to a separate location that is drawn from a uniform distribution.

3 Results

To model the effects of selective pressure on genome evolution, three simulations were conducted, il-
lustrating wildtype, relaxed, and stressed selective pressure. Our baseline model shows that, over the
course of hundreds of generations, the population genome size decreases under relaxed selective pres-
sure (Figure 2a). In accordance to our expectations, the decrease in selective pressure renders some
bacterial genes as non-essential, and therefore as the population size decreases, so does the genome size.

Another round of simulation was conducted to observe the effects that selective pressure could have on
different species, i.e. increasing the genome size and the number of generations (Fig.2¢). The increase
in population size and generations had a similar effect as seen in Figure 1. The genome size under
relaxed selective pressure is much smaller compared to the size under the wildtype conditions. The
decrease may be attributed to the idea that individuals with a smaller genome size have greater fitness
under relaxed pressure and therefore had more offspring. But, we also do not expect to see similar kind
of simulations on every run because as per our understanding of sequence evolution, selective pressure
may not be the only criteria that is driving genome reduction, and not having a reduction on every
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Figure 2: Bevol simulation tests: (a) Baseline Simulation. Parameter settings: Number of generations
= 1000, Genome Size = 1000 bp, Number of individuals = 5, k_wildtype = 750, k_relaxed = 250,
(b) Cumulative number of mutations across wildtype and relaxed simulation for baseline simulation
(See end for more details), (¢) Simulation with Increased genome size and number of generations.
Parameter settings: Number of generations = 3000, Genome Size = 2000 bp, Number of individuals
= 20, k_wildtype = 750, k_relaxed = 250, (d) Cumulative number of mutations across wildtype and
relaxed simulation for second simulation (See end for more details), (e) Simulation of Stressed condition.
Parameter settings: Number of generations = 100, Genome Size = 5000 bp, Number of individuals =
10, k_wildtype = 9, k_relaxed = 3, k_stressed = 15. Details on mutation numbers plot: Red: Wildtype;
Blue: Relaxed; Key along x-axis as mutation types: 1. Large Deletion, 2. Inversion, 3. Duplication,
4. Translocation, 5. Point Mutation, 6. Small Insertion, 7. Small Deletion.
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run is clearly an indication of the same. Furthermore, we wanted to observe this genomic reduction
had on the cumulative mutation numbers at the end of each run. Therefore, the number of mutation
events of each type from the winning parental candidate that was the most fit or, alternatively had
the most offsprings, in each generation was recorded (See Fig.2b, 2d). From this, we observed that
relaxed selective pressure overall had a fewer mutational events than the wildtype. We do not see any
direct correlation between these mutational rates and the selective pressure since there seems to be
a uniform decrease in the mutational events across all types for relaxed pressure. But, one possible
explanation on why there seems to be a reduced number of events in the relaxed case is by drawing
a precedent with genetic drift, where organisms undergo genome reduction. It is possible for a high
fitness variant to get selected for multiple generations, which may cause other variants to disappear.
Since the same variant appears as fit in several generations, we observe a lesser number of mutational
events with respect to the winning candidate in the relaxed pressure case.

A final experimental run was conducted to observe the effect that stressed selective pressure had on the
genome size (Fig.2e). Consistent with our previous findings, the relaxed and wildtype cases behaved
as expected. However, it was interesting to observe that stressed condition did not show a significant
difference in genome size across generations. More experimental runs with varying genome size and
number of generations could possibly help us understand this phenomenon further.

4 Discussion

This project successfully modeled sequence evolution in silico. We were successful in solving a wide va-
riety of computational problems including discrete optimization, namely pattern matching for finding
the promoter in transcription, and sampling from a probabilistic distribution for selection as well as
for mutagenesis. Our method is not optimized for computational efficiency and could greatly benefit
from a more sophisticated substring search algorithm. Further optimization of this platform could also
include computing individual fitnesses in parallel, as a form of distributed optimization.

While our methodology differed slightly from that of Aevol, namely in the normalization techniques
and algorithm implementation, we can compare our results. We present observations where the genome
size of our synthetic organisms reduces in an environment under relaxed selective pressure. However,
more simulations and statistical analysis should be conducted in order to make confident conclusions
about the relationship between genome size and selective pressure.

This proof-of-concept project shows how such a platform can be used for studying sequence evolution.
Our model makes important assumptions in order to compromise for feasibility. The authors of Aevol
also discuss the fact that “obviously, working with simulated - false - organisms is the major drawback
of this approach.” Using such a platform with real data would be a more reliable method for making
important conclusions about biological sequence evolution.

5 Future Work

It may be worthwhile to test the model for other factors responsible for reductive evolution, in other
cases like genetic drift, bottlenecks, etc. For this end, mutation rates, addition of pleiotropy elements
along others could be varied. Not restricting ourselves to reductive evolution, we could also model
metabolic changes in bacteria and adaptations of the organism when exposed to antibiotics. In fact,
we could also go beyond bacteria to attempt at simulating viruses and other organisms.

Another interesting future work could be with respect to mutations. For now, on each round, muta-
tions seem to be occuring randomly and seems quite unlike what happens in nature, where mutation
rates are intrinsically optimized when bacteria evolve in different environments [2]. A good simulator
should then have a system which optimizes this mutation rate. We could also attempt to model our
mutations off a previous study [3], rewarding increased fitness over consecutive generations with an
optimized mutation rate. As an extended study, a close comparison between such an optimized model
and a more general random model may help in understanding the atypical evolutionary trajectory



involved with changing mutation rates.
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