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1 Introduction

Conducting physical experiments in order to analyze sequence evolution requires a considerable amount
of time and resources. The purpose of our project will be to construct an in silico experimentation
tool to test scenarios of sequence evolution to better our understanding of evolutionary sequence ef-
fects. Creating this in silico platform will be important for analyzing individual effect of evolutionary
factors (e.g. selection strength) on a population of simulated organisms. Our bevol platform will
follow the structure of aevol (artificial evolution; an open-source package written in C++ which is
currently unstable) by simulating the variation-reproduction cycle with reasonable simplifications as
described by Batut et al. in 2013 [1]. With this illustrated approach towards testing sequence evolution
in silico, we will scrutinize simplifications of the system we are modeling, and compare these with aevol.

In this project, we will establish a baseline model by analyzing genome size in two environments
with different selection pressures, similarly to Batut et al.[1], such that we should see a decrease in
genome size under relaxed selection (see Figure 1 in Appendix). We hope to replicate this figure and
expand the in silico application by comparing this effect in two different simulated “species” where
one has a starting genome size on the order of 100 times that of the other. Other extensions include
chromosomal rearrangements during mutation or horizontal gene transfer during reproduction and
parallelization on a double stranded chromosome if time permits. We expect our biggest challenge to
be designing the pattern-finding algorithm where we locate promoter sequences during the transcrip-
tion step of our simulation.

2 Background

Simulation methods have been developed to model evolutionary scenarios. For instance, Bacmeta is a
simulator of genomic evolution in bacterial metapopulations [4]. It incorporates stochastic simulation
of neutral evolution within a large collection of interconnected bacteria with an adjustable connectiv-
ity network. This model allows the user to specify connectivity between sub-populations of bacteria,
incorporating connectivity which is hard to model in phylogeny reconstruction methods.

Aevol simulates sequence evolution of artificial organisms, and allow for in silico experimentation
of different evolutionary scenarios. The paper discusses how this in silico platform can explain the
reductive evolution observed in biological circumstances such as endosymbiosis and closely related ma-
rine bacteria. However, this package is unstable and we were unable to actually run this program due
to segmentation failure. In this project, we try to design our own simulator for virtual populations
in python. Our platform differs from that of aevol in that we will not include some of the auxillary
programs for things such as visualizing lineage, but rather focus on modeling the reductive evolution
scenario as a function of genome size.



3 Methods

3.1 Overview

Our “bevol” platform will be structured very similarly to aevol (see Figure 1 in Batut et al[1]). Our
simulation will model transcription, translation, fitness and selection, and mutation. Each artificial
organism will consist of a single chromosome with binary nucleotides containing coding and noncoding
regions. We transcribe and translate each genome into a set of arbitrary “cellular process” ranging
from 0.0 to 1.0. Fitness is measured by comparing the phenotype represented by f, of each individual
to an arbitrary phenotype needed to survive the pre-determined environment f.. Selection will occur
by drawing from a multinomal distribution with parameters defined by the fitnesses such that each
generation has constant size N. Reproduction of the N selected individuals is asexual. When a chromo-
some is replicated, it can undergo various types of mutations occurring randomly at pre-defined rates.
We can adjust parameters including mutation rates, and f. to observe and explain genome shrinkage.

3.2 Protocol
3.2.1 Transcribing and Translating DNA code to protein (Sofia)

Initially, the genome will be randomly generated with at least one coding region. A loose form of
transcription will occur between 22 bp promoters and stop codons. We will assign an expression level
to the transcript e =1 — 1++W where d represents the hamming distance between the promoter and
a pre-defined consensus. The artificial genetic code will used be sequentially translate each 3 bp codon
into one of 6 possible amino acids M0, M1, W0, W1, HO, H1, or the start or stop codon. This sequence
of amino acids will then be used to compute the phenotypic contribution for each protein which may
be inhibitory.

Given the sequence of amino acids, we will calculate m, w, and h, where the protein may be
represented as a triangle graph as a function of these values. m represents the mean ”cellular process”
of the protein, w represents the range of pleiotropy that this protein exhibits, and h represents the
efficiency of the protein.

In computational terms, the codons form the Gray codes of the three parameters m, w, and h. For
example, if the amino acid sequence is M1,HO,W1,M0,H1, then the Gray code for m is 10, for w is 1,
and for h is 01. w is then normalized by multiplying by w * gzmez where n,, is the number of W0 or
W1 in the sequence; m is normalized similarly between 0 and 1 and h between -1 and 1. With these
values of m, w, and h defining each protein, the global phenotype of the individual may be calculated.

3.2.2 Decoding phenotype from proteins (Emma)

Given the set of phenotypic contributions from each protein, the global functional capabilities of the
individual f, will be calculated. f, represents the phenotype of the individual where several proteins
may overlap. Similarly to aevol, this will be represented as

Jo(@) = maz(min(Y, fi(x),1) — min(S, f;(2),1),0)
such that f; is the possibility distribution of the -th activator protein with h > 0, and f; is the
possibility distribution of the j-th inhibitory protein with h < 0.

3.2.3 Computing Fitness (Sriram)

Given the calculated phenotype, the fitness will be calculated. Similar to aevol, we will compute a gap
g = [|fe — fp|, where f. represents a possibility distribution which we will pre-define as the sum of
three gaussian functions. In biological terms, f. represents the optimal degree of possibility for each
cellular process to survive in the environment.

3.2.4 Selection (Yejie)

2577:(1,% where k determines the steepness of the selection coeffi-
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cient distribution. Selection is then performed such that new generation is drawn from the multinomial

distribution representing the number of offspring each individual of the parent generation produces
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3.2.5 Reproduction with Mutation (Mirudhula)

On every round of reproduction, various types of mutations can occur, that include point mutation,
small and large insertions, small and large deletions, duplication and translocations. Each of these
seven types can be considered to have a per-position mutation rate. The number of mutations for each
type could be drawn from independent uniform distributions, except for large deletions and transloca-
tions which is drawn from a Binomial Law.

Albeit, on each round, these mutations seem to be occuring randomly and seems quite unlike what
happens in nature, where mutation rates are intrinsically optimized when bacteria evolve in different
environments [2]. A good simulator should then have a system which optimizes this mutation rate. We
will be modeling our mutations off a previous study [3], rewarding increased fitness over consecutive
generations with an optimized mutation rate. As an extended study, a close comparison between
such an optimized model and a more general random model may help in understanding the atypical
evolutionary trajectory involved with changing mutation rates.

4 Timeline of the project

We will continue to meet weekly with the goal of having all of our individual parts completed by
November 16 (3 weeks from now). We will then run a full 2-step simulation together at our meeting on
November 18. We will recreate the main figure from Batut et al. by our internal meeting on December
2 (5 weeks from now). We will then run our experiments, generate data, and create figures and compile
a slide deck by the class presentation on December 6. We will then write a report by the due date
December 15.
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Appendix

Relevant Background Figures and Tables
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Figure 1: Figure 2 from Batut et al. summarizing the results of their in silico experiment analyzing
the effect of selective pressure on genome fitness and size (k=250 for the relaxed environment in green;
k=750 in red). You can see that under relaxed selective pressure, the population has lower fitness
(upper panel) and a reduced genome size (lower panel). The paper discusses how this in silico platform
can explain the reductive evolution observed in biological circumstances such as endosymbiosis and
closely related marine bacteria. Interestingly, in Figure 3 of this paper, they show how most of the

genome loss occurs in non-coding regions.
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Figure 1: Overview of the aevol model.
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Figure 2: Translation of DNA and decoding phenotype.
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Figure 2 : Measuring the adaptation of an individual. Dashed
curve: environmental distribution fz. Solid curve: phenotypic
distribution fp (resulting profile after combining all proteins). Filled
area: gap g.

Figure 3: Computation of fitness from the phenotypic distribution, which is important for the selection
and mutation step.

Parameter Symbol ~ Value

Population size N 1,000

Size of the initial (random) genome Linit 5,000 base pairs

Promoter sequence - 0101011001110010010110
with up to dmax = 4 mismatches

Terminator sequences - abed * * * deha

Initiation signal for the translation - 011011***000

Termination signal for the translation - 001

Genetic code - See Figure 1

Global set of “biological functions” Q [0, 1]

Maximal pleiotropy of the proteins Winax 0.033

Environmental possibility distribution fe See Figure 2

Selection scheme - Linear ranking

Selection intensity n 1.998

Point mutation rate Upoint 107 per position

Small insertion rate Usmallins 10 per position

Small deletion rate Usmalldel 107 per position

Large deletion rate Ulargedel 107 per position

Duplication rate Uduplic 10 per position

Inversion rate Uiny 10 per position

Translocation rate Uanstoc~ 10” per position

Length of small indels - Uniform law between 1 and 6 positions

Length of rearrangements - Uniform law between 1 and L positions

Table 1 : Parameter values used for the run detailed in this section.

Figure 4: Parameters as used in Aevol. A subset of these parameters including N, L;nit, Wmaz, fe,
and mutation rates will be used in our project.
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