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1 Introduction

Lung cancer continues to be the most severe form of cancer being the leading cause of all
cancer-related death worldwide. More than half the number of patients are known to have advanced
stages of lung cancer by the time they are diagnosed. Incidence of lung cancer is higher in people
over 60 years and above, it can occur due to environmental factors, hereditary or smoking(13).
Common perception indicates smoking to be the most likely reason but that does not explain for the
25% of the cases attributed to non-smoking related lung cancer(23).

Asthma, Chronic Obstructive Pulmonary Disease (COPD), Tuberculosis and so on are known to
be pulmonary co-morbidities related to lung cancer and the presence of these co-morbidities has
shown to result in early diagnosis of cancers (6). There are many factors that can cause chronic
inflammation in the bronchial epithelium which can result in lung cancer. There are also studies
which have shown that inflammatory state in severe asthma can make patients susceptible to cancer
of lung and other organs (20). Some meta-studies have linked severe cases of asthma to lung cancer
(21; 17; 19), but these studies are mostly associated with conducting risk analysis on asthmatic and
cancer patients, being observed over the course of several years, indicating a dearth in research based
on gene expression data.

Although there are studies which have identified the molecular signatures and associated
pathways of asthma (2) and lung cancer (25) independently, very few (20) have reported key
molecular signatures associated with both lung cancer and severe case of asthma. Hence, in this
project, we identified a panel of gene signatures that are associated in both Non Small-cell Lung
Cancer (NSCLC) patients and Severe Asthmatic (SA) patients, through insilico methods using the
gene expression data of both the diseases in epithelial cells of the bronchial tract. We validated
these genes and arrived at 8 key genes that seemed to be differentially expressed in Lung Cancer
(overexpressed) and Severe Asthma (underexpressed). Out of them, we identitfied PPARD to be
expressed in higher levels in mixed cases of the diseases. This reveals that these genes could possibly
be identified as biomarkers of NSCLC in patients with severe cases of asthma.

2 Data

2.1 Dataset

For analysis, gene expression data for Severe Asthma (GSE64913) and NSCLC (GSE29013) was
downloaded from Gene Expression Omnibus. The asthma dataset used was obtained from epithelial
brushings of peripheral airways of the patients. This dataset consists of 28 severe asthmatic patients
and 42 healthy volunteers and a total expression data from 54675 genes. Expression data for NSCLC
was obtained from Formalin-Fixed Paraffin-Embedded Samples (FFPE), which is known to be a good
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source to study the molecular changes in cancer and the associated clinical outcome. This dataset
contained 55 samples of patients with lung cancer and expression data from 54675 genes. Out of
the 55 NSCLC patients, only the 52 non-smoking patients were considered. The sequences were
analyzed on Affymetrix microarrays to obtain the expression data.

The results obtained were validated on another pair of gene sets for Asthma (GSE63142) and NSCLC
(GSE68793). The gene expression data for asthma was collected from bronchial epithelial cells of
asthma, of 155 samples in total out of which only 36 samples labeled as "Severe Asthmatic", was
used for this study. Similarly, out of the 135 NSCLC patients, only 39 patients who were mentioned
to be non-smokers or reformed smokers for more than 15 years was chosen as the final cohort.

2.2 Data Preprocessing

Normalized Gene expression data for Severe Asthma and Non Small Cell Lung Cancer (NSCLC)
was available from Gene Expression Omnibus. The Asthma gene expression data had labels for both
healthy and severe asthmatic samples, and no features with zero/NaN values were found. The Lung
cancer gene expression data which only had samples with lung cancer patients was combined with
the normal patient samples from the asthma dataset, thereby using the same control samples across
both diseases. Additonally, those who had zero counts in a particular feature was removed.

3 Methods

The workflow is depicted in the flowchart in Fig.1.

3.1 Differential Gene Expression

After collecting the gene expression datasets for Severe Asthma and Lung cancer, Differential Gene
Expression Analysis (DGE) was performed to determine which genes are expressed at different levels
between disease and healthy samples. This was done using R programming language, utilizing the
Limma package in Bioconductor (7). The up-regulated and down-regulated genes for both these
conditions were identified.

Figure 1: Overview of Methodology
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3.2 Gene Set Enrichment Analysis

Following DGE, we were able to form four different gene sets, that could be used for performing Gene
Set Enrichment Analysis (GSEA) (22). This was done to analyze two aspects: (a) GSEA of upregu-
lated/downregulated lung cancer gene sets in asthma dataset, (b) GSEA of upregulated/downregulated
asthma gene sets in lung cancer dataset. Genes were ranked in each case by computing their correla-
tion to the disease and control samples, and ordered accordingly. Gene shuffling was conducted with
1000 permutations, which allowed estimation of p-values and false discovery rate with a precision
of upto 10−3. The leading edge set representing the top genes that are enriched in each experiment
of GSEA was identified. This helped us identifying the expression pattern of, for example, a gene
set that is upregulated in lung cancer, in asthma dataset. This was done in order to select only those
genes that seem to be overrepresented in the dataset the gene set is matched against.

3.3 Validation

To validate the set of genes that we obtained from GSEA, we intersected these with another pair of
asthma-NSCLC datasets to identify common features which can be validated. Then, we implemented
a decision tree learning model on MATLAB to see if the genes were expressed similar to our analysis
datasets. This methodology followed is quite similar to the one used by Irshad et al. (11). The gene
expressions were z-score normalized across all samples, and the values were further discretized as:
(a) 1, if ei >= 0.5, (b) -1, if ei <= -0.5, and (c) 0, otherwise. These represent the expression states of
each gene with respect to each patient, and a series of decision trees were implemented using this
data, for an increasing number of features for all combinations of genes, i.e. d-trees construction was
iteratively done by adding more genes to the predictive combinations. Finally, tree pruning was also
conducted to avoid overfitting. The losses for each tree was calculated and the best combination of
gene was selected based on minimal loss in the test set, after conducting a 5-fold cross validation.

4 Results

4.1 Differential Gene Expression Analysis

DGE was performed on R studio by using limma package. To improve the accuracy of the prediction
we filtered the lowly expressed genes and selected only those genes which should a high expression
using an absolute log fold change cut off. Further only those genes were chosen that had a high
expression for at least 2 samples. The top genes were ranked having an absolute log fold change (FC)
and p-value cut off chosen for the two datasets shown in Table 1.

Table 1: Abs log fold change and p-value
Gene Set Pvalue abs(log2(FC))

Asthma 10e−60 5
Lung Cancer 5e−2 0.75

Genes with a negative abs(log2(FC)) were considered to be the down-regulated genes and genes
with a positive abs(log2(FC)) were considered to be up-regulated (See Table 2, for reference). A
volcano plot indicating the up-regulated and down-regulated genes for both severe asthma and lung
cancer was obtained as shown in Fig.2. These gene categories form the four different gene sets that
were used in GSEA.

Table 2: Up-regulated and Down-regulated genes for Severe Asthma and Lung Cancer
Condition Up-regulated Down-regulated

Asthma 98 87
Lung Cancer 950 190
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(a) DGE for Asthma vs Healthy (b) DGE for Lung Cancer vs Healthy

Figure 2: Identifying the up-regulated and down-regulated genes for severe asthma and lung cancer:
(a) Severe Asthma, (b) Lung Cancer

4.2 Gene Set Enrichment Analysis

Our goal was to observe whether the filtered differentially expressed lung cancer gene sets were
enriched in the Asthma dataset and vice versa. As shown in Fig.3a, enrichment of upregulated lung
cancer gene set in the asthma dataset was observed with a p-value less than 0.05 and having a False
Discovery Rate (FDR) equal to 5%. Leading edge set of 40 genes were identified that were indicated
to be overrepresented in the asthma dataset. In the other three GSEA analysis, no significant results
were obtained. The downregulated genes of lung cancer seemed to have a uniform representation
in the asthma gene set, and produced a p-value > 0.05. There appeared to be some enrichment of
upregulated asthma genes in the NSCLC dataset, but almost all genes were highly correlated with
control patients and not asthma patients. Likewise, downregulated genes of asthma had uniform
representation with respect to both NSCLC and control patients, so these results had to eliminated as
well, for further analysis (See Fig. S1a, S1b, S1c).

For the 40 top enriched genes selected from GSEA against asthma dataset, we identifies their p-values
in the same dataset, to see if the expression was significant. We filtered it down to 25 genes that had
significance less than 0.05, and removed genes from this leading edge set for which we could not
infer gene symbols, leaving us with 22 significant genes. Furthermore, we found that these 22 genes
were, in fact, being differentially expressed in both NSCLC and Severe Asthma patients, wherein the
genes were under-expressed in asthma but overexpressed in NSCLC (Refer Fig.3b).

(a) (b)

Figure 3: (a) GSEA for up-regulated gene set of lung cancer against severe asthma dataset, (b) Log
fold expression change for Asthma and Lung cancer. Boxplot shows differential expression in both
diseases
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4.3 Validation

The top 22 filtered genes were intersected with another pair of asthma-lung cancer datasets, to get
15 common genes to be validated upon. Decision tree was implemented to classify NSCLC and
Severe Asthma, iteratively for an increasing number of genes or features, and the loss for the best
permutation of genes was plotted for each iteration (Fig.4a). From this result, a list of final 8 genes
(AAK1, CALD1, HIF1A, KIAA0101, PPARD, PPP1R13L, SCRIB, SIN3B) were identified to have
the best classification accuracy, without overfitting the training data.

(a) (b)

Figure 4: (a) Train-Test loss plot from implementing decision classification tree, (b) Final Decision
Tree with 8 features

5 Discussion & Conclusion

This study helped us identify 8 key molecular signatures in differentially expressed genes of Asthma
and Lung cancer. All 8 genes were somehow related to lung cancer or asthma. The complete details
about the 8 genes are listed in Supplementary Table S1. PCLAF was found to be involved in signaling
and DNA repair mechanism pathways, which is in fact related to 2.5% of adenocarcinoma cases
are due to mutations in DNA repair genes (3). This gene was also found to be responsible for
orchestrating major inflammatory problems in airspaces (16). It was surprising to find this genebeing
differentially expresses in two diseases that are both related to respiratory tract. Furthermore, PPARD
and CALD1 (Caldesmon) are known to have functional roles in adhesion, inflammation, proliferation
and regulating interactions in smooth muscles. Additionally, both are known to be markers for both
asthma and lung cancer (1; 30). Another interesting aspect of PPARD is that it was observed to
have an elevated gene expression, compared to plain asthma cases, in patients having mixed cases
of severe asthma and NSCLC. We hypothesize that this gene can be a key factor enabling us to use
it as a potential marker for diagnosing early lung cancer in severe asthma patients. As next steps,
conducting in vivo analysis of this 8 gene panel would possibly help uncover more relations with
respect to severe asthma, NSCLC and the mixed cases of these diseases.
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6 Appendix

(a) (b)

(c)

Figure S1: GSEA for up-regulated and down-regulated genes for severe asthma and lung cancer: (a)
Down-regulated gene set of lung cancer against severe asthma dataset, (b) Up-regulated gene set of
asthma against severe lung cancer dataset, (c) Down-regulated gene set of asthma against severe lung
cancer dataset
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Table S1: Details about the 8 key genes correlated with both NSCLC and Severe Asthma

Gene Protein name Pathway/Description Reference
AAK1 AP2-associated pro-

tein kinase 1
Clathrin mediated endocytosis; Prognostic marker
for ovarian cancer.

(5)

CALD1 Caldesmon It is an actin and myosin-binding protein impli-
cated in the regulation of actomyosin interactions
in smooth muscle and nonmuscle cells. CaLD is
known to be overexpressed in brain metastases of
lung Cancer.

(1)

DNALI1 Axonemal dynein
light intermediate
polypeptide 1

May play a dynamic role in flagellar motility.
Found to be downregulated in lung cancer in pa-
tients with a smoking history.

(4)

HIF1A Hypoxia-inducible
factor 1-alpha

Functions as a master transcriptional regulator of
the adaptive response to hypoxia. HIF1A is com-
monly expressed in NSCLC and is associated with
a number of biologic factors that are involved in
the pathogenesis of NSCLC.

(24)

KIAA0101 PCNA-associated
factor

Acts as a regulator of DNA repair during DNA
replication. KIAA0101 expression in lung adeno-
carcinoma tissues is known to be higher than that
in normal lung tissues according to a study.

(9)

KLC2 Kinesin light chain
2

Microtubule-associated force-producing protein
that plays a role in organelle transport. KLC2 pro-
tein was found to be upregulated in NSCLC cell
lines and tissues, and was an independent predictor
of poor prognosis for elderly NSCLC patients.

(12)

MGAT4B Alpha-1,3-
mannosyl-
glycoprotein
4-beta-N-
acetylglucosaminyl
transferase B

Glycosyltransferase protein. MGAT4B were re-
ported as oncogenic genes. It was also observed
that MGAT4B transcripts were also upregulated
in diethylnitrosamine-induced mouse model for
hepatocellular carcinoma.

(8)

MLLT4 Afadin Essential for the organization of adherens junctions.
MLLT4, has been shown to be specific biomarkers
for lung cancer epithelial cells in-situ.

(10)

PHLDA2 Pleckstrin
homology-like
domain family A
member 2

Known to be tumor suppressor genes which is
downregulated in lung cancer

(26)

PPARD Peroxisome
proliferator-
activated receptor
delta

They are known to function as a tumor suppres-
sor, inhibiting development of primary tumors and
metastases in lung cancer and other malignancies

(18)

PPP1R13L RelA-associated in-
hibitor

PPP1R13L is prognostic, and high expression is
unfavorable in lung cancer

(28)
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PXDN Peroxidasin ho-
molog

May be a potential target for tumor immunother-
apy, providing a new candidate that could improve
cancer clinical diagnosis and treatment.

(29)

SCRIB Protein scribble ho-
molog

Low expression of SCRIB in CAFs is correlated
with advanced tumor stages and poor survival for
human lung squamous cell carcinoma.

(27)

SIN3B Paired amphipathic
helix protein Sin3b

Differentially regulates breast cancer (14)

UBE2D4 Ubiquitin-
conjugating enzyme
E2 D4

UBE2T play critical roles in the progression of
NSCLC and could be a potential therapeutic target
for the treatment of NSCLC patients.

(15)
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