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1 Introduction

Aging is a biological process which affects every single cell in the body, but the exact molecular
mechanisms remain unknown. In order to decipher this mechanism, we can study which gene features
are predictive of chronological age. Phenotypes such as aging are usually studied at the level of bulk
data, which comes from aggregated expression data from multiple cells.

Past studies have shown some success predicting chronological age from bulk human and mouse
gene expression data using elastic net models (1)). However, these bulk tissue measurements do not
explain how heterogeneous populations of cells differ in terms of their gene expression as aging
progresses. Fortunately, single-cell sequencing technology allows us to examine disease biology in
unprecedented detail.

However, there are also new computational challenges involved in processing and interpreting this
high dimensional expression data. In addition to biological noise from the stochastic process of
mRNA production, there is technical noise due to the low amounts of genetic material that can be
captured from a single cell. Therefore, deep learning classifiers may be especially well suited to this
challenge.

We hypothesize that chronological age can be predicted from features of single-cell expression
data using deep learning methods. Towards this goal, we aim to compare deep learning models for
predicting age from a real biological dataset, which in this paper is taken from 189432 human neurons
from 69 control patients of a study of schizophrenia (7).

2 Background

A comparative study between chronological age and biological age is useful in understanding aging
as a phenomenon explained by a set of biomarkers. Recently, studies have shown to indicate that
the internal aging clock can be explained by using gene expression data (2 |3). Some studies have
utilized this to build models for prediction of age using Genotype-Tissue Expression (GTEXx) profile
from multiple human tissues using an elastic net algorithm (12 9) to account for sparsity in data.
Another study conducted age prediction analysis in zebrafish with the help of a simple Multilayer
Perceptron Model (MLP) with one linear layer, two ReLU activation functions, and a softmax layer
to predict the biological age of the zebrafish into three discrete bins indicating stage of age in life (8)).
In our project, we will try to incorporate single-cell gene expression data from human neurons to
predict biological age of the subject using various deep-learning techniques.
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3 Methods

3.1 Preprocessing

The entire dataset consists of 189432 human neurons from 69 controls, containing a distribution
of ages from 25 to 94 years (Fig[2). To facilitate the fit of the deep learning model, we applied
feature scaling of both the target variable as well as z-scoring of the feature matrix using sklearn
StandardScaler.

3.2 Architecture and data split

We implemented two baseline models based on Multi-layer Perceptron (MLP) with varied architecture
and one linear regression model, in order to perceive how the data would be projected across such
different models:

1. An elastic net model with parameters tuned by 5-fold cross validation, for the purposes of
comparison with previously published elastic net models. The train/validation and test set
consisted of 55 and 14 individuals respectively.

2. Baseline 1: An MLP regressor (skorch NeuralNetRegressor) with 3 linear layer of size
5000, relu activation, and then a linear output layer. For ease of direct comparison, the
train/validation and test set was the same as for the elastic net model

3. Baseline 2: A Pytorch implementation of regression using MLP with 2 linear layers, one of
size 100 and another of size of 50, with ReLU activation layer, 1-d Batch Normalization and
Dropout probability of 0.4. The optimizer used was Adam, with weight decay of 0.9.

On all of these architectures, we report the mean absolute error (MAE) of the classifier on the
validation set, when averaged across all the cells for each patient.

4 Baseline Results

The distribution of the ages of the different patients is shown in Figure [2| under the Supplemental
section. The baseline results across all three models are shown in Figure [I] The goal of the first
baseline NN model was to observe the predictions when we have a large network (5000 neurons),
and the second baseline model was implemented to observe the results under the effect of dropout
and batch normalization layers, with a relatively smaller network. The Mean Absolute Error (MAE)
for the linear model was found to be the the least followed by Baseline NN 1, and then Baseline
NN 2. Similarly, the Pearson Correlation value (R) was found to be the highest for the linear model.
This shows that the neural network baseline models do not seem to perform as well as the elastic
net(glmnet) model.
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Figure 1: Linear Model vs Baseline result 1 vs Baseline result 2. In each graph, the Pearson
Correlation (R) and associated p-value is shown, as well as the MAE. The glmnet elastic net model
outperforms the both baseline neural network models.



5 Future Work

Since we have found that architectures from our baseline models are unable to perform as well as a
linear elastic net model, which is a sparse model, we next plan to implement dimensional reduction
techniques in order to extract features of interest within this expression data. In the section, we
discuss three techniques to do this: NMF, VAE and DAE.

5.1 Introduction to NMF data decomposition

The interpretation of sScRNA-seq data requires methodological innovations. To find the important
biological signals, matrix factorization approaches can find a simplified and thus more interpretable
representation of an expression matrix which can also be less costly for a deep learning model to train.
For example, exploratory analysis is usually assisted by unsupervised matrix factorization approaches
such as principal components analysis (PCA) or t-distributed stochastic neighbour embedding (t-
SNE). Non negative matrix factorization (NMF) is another popular matrix factorization approach with
the advantage that it has been shown to be able to discover biologically meaningful gene expression
programs as latent factors compared to PCA and t-SNE (6). This approach has been successfully used
for cell type markers in the past, but it has not yet been applied towards deciphering gene expression
programs such as human aging. We will attempt to infer the top 100 latent variables using NMF and
check their correlation with Age.

5.2 Introduction to Variational Autoencoder

Studying patterns in the level of transcripts in the scRNA-seq data can lead to identifying key
molecular signatures responsible for the aging process. But, this data is highly complex in nature and
poses great challenges in both regression analysis and feature selection. Following this, a very high
features-to-examples ratio, which is a widely prevalent characteristic of biological and medical data,
makes the model close to uninterpretable as well. Scientists have come up with ways to compress
large datasets in order to identify and consolidate across multiple latent dimensions to capture key
gene expression representations in a quick and efficient manner (11)). Previous studies have worked
with novel techniques that involve variational autoencoders (VAE) to compress RNA-seq data for
extracting latent dimensions (10) or for performing dimensional reduction in scRNA-seq data related
to cancer (4)). But, no study has yet been conducted on the application of VAEs on ageing related
transcriptomic data. Therefore, this project will explore how regularization between a series of linear
layers of an autoencoder will help in identifying good latent dimensions for efficient regression.

5.3 Introduction to Denoising Autoencoder

As there are no limits in architecture for latent variable modeling with deep neural networks, such
as the depth of the network and the types of layers in-between the network’s input layer and output
layer, or regularization used, current practice in biological fields has been widely conducted on the
application. Also, it can typically make data visualization easier for non-numerical data types as well
as finding similarities in a complex dataset. However, the current practice in biological fields on aging
data has not been fully conducted on the application of DAE (denoising autoencoder). Therefore,
in addition to the practice of deep neural networks models, this project will use a multi-layer DAE
(denoising autoencoder) to extract the features which are most representative and informative in
constructing a deep neural network (5). In this way, the denoising autoencoder will learn the features
which will be tuned using a softmax classifier and fully connected layers. scDAE may be able to
outperform other methods on this noisy single cell dataset.

6 Teammates and work division

Q.S. was responsible for implementing the elastic net and Baseline 1, and will implement NMF
decomposition for the final report. J.Z. was working on implementing the MLP model, and will try to
implement DAE for the final. M.M. implemented Baseline 2 and will be working on VAE for the
final report.



Supplemental Figures
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Figure 2: Distribution of target variable (Age) across 189432 individual cells measured.
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