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Abstract

Background: Glioma is a common malignancy of the brain. It is the leading cause
of death due to inefficient tumor classification methods and poor prognosis. We
propose classification of subtypes of gliomas using gene expression data from a
machine learning approach
Methods: We evaluated four different supervised classification models comprising
Naive Bayes, K-nearest neighbor, Logistic Regression and Support Vector Ma-
chines. The models were trained to classify between normal and glioma samples
and further classify the subtypes of glioma. Five fold cross validation was used to
evaluate our models for extracted gene expression data.
Results: The Support Vector Machine algorithm was able to perform the best for
given samples in all our classification problems. This was followed by K-nearest
neighbor and Logistic Regression bearing comparable results. Naive Bayes showed
the poorest results when compared to the other classifiers.
Conclusions: Glioma was successfully classified using all four utilized classifiers.
An insight into use of different feature selection/extraction techniques and obtaining
the "most informative" genes from these techniques may give us new leads into
driver genes for the cancer.

1 Introduction

1.1 Problem

Glioma is the most common cancer of the central nervous system and a leading cause of death due
to poor prognosis. The treatment of gliomas greatly depends on accurate tumor classification. The
mostly widely used WHO classification classifies gliomas into Astrocytoma, Oligodendroglioma, and
Glioblastoma based on their cells of origin [1]. Astrocytoma and oligodendroglioma are low grade
while glioblastomas are high grade gliomas. Classification of gliomas and normal cells can lead to
early diagnosis of the cancer. Additionally, classifying gliomas to distinguish between the lethal
high grade glioblastoma and the low grade gliomas is an unmet need and incorrect classification can
greatly affect the treatment plan and its outcome.
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1.2 Motivation

Most studies on glioma is driven with an aim to find targets for drug delivery in order to alleviate
cancer growth without due regard to the genetic nature of glioma. Previous literature, which
are acutely oriented to studies on glioblastoma, mainly comprises wet-lab analysis that include
elaborate mass spectrometry methods and exhaustive in vitro and in vivo methods in regulated tumor
microenvironments, on a variety of druggable targets [2-4]. Classification of gliomas in clinical
settings are mostly based on a priori assumptions based on the histological information [5]. Up until
now, such a loose classification method was what drove therapy. The few research groups that did
come up with ways that can help in classification either have outdated data with an obsolete way
of categorizing glioma [6] or use ML approaches on image data from MRS (Magnetic Resonance
Spectroscopy) [7], the data for which is difficult to obtain since it not only requires conducting
convoluted MRI experiments but also requires human subjects with different types of glioma. Such
subjects are rather difficult to find and it is even more difficult to get their consent for conducting such
analysis. There are some studies that use ML classifiers on transcriptome data of glioblastoma to
identify inactivation of NF1 in cancerous cells [8]. For this reason, our goal is targeted at simplifying
such tedious pre-clinical analysis by using ML methods on gene expression data.

Novel advances in genomic research in combination with machine learning methods have enabled
accurate classification of tumors in clinical management of cancers. A key research done on classifi-
cation of gliomas using microarray gene expression data was a starter analysis of sorts that classify
glioma as high grade and low grade, using data sets from Gene Expression Omnibus (GEO) [9]. In
our project, we take an extra step to classify gliomas according to their cellular origin.

1.3 Overview of Methods

This project aims to classify between the normal and glioma samples and glioma subtypes using
supervised machine learning models. Gaussian Naive Bayes (GNB), k-Nearest Neighbour (k-NN),
Logistic regression (LR), and Support Vector Machine (SVM) are used for binary classification as
well as multi-class classification. The models for GNB, k-NN and LR were implemented from scratch
for the project. SVM was implemented using scikit-learn.

GNB is a probabilistic machine learning model that assumes conditional independence between the
genes. k-NN is a non-parametric model that assigns weights to the contribution of each gene based
on its distance in the feature space. LR uses a sigmoid function to identify the disease type and tuning
the regularization parameters prevents overfitting. SVM utilizes the mutual information between the
genes and the class label to train the classifier by finding the best separation hyperplane.

This project compares the performance of all four models for given data using a 5-fold Cross
Validation.

1.4 Datasets Analyzed

This project used publicly available data for glioma from The Cancer Genome Atlas (TCGA). Gene
expression data in TPM format and clinical information were downloaded. The dataset included
704 samples with around 60,000 features with seven class types. We merged and removed some
classes to give three class-types for our model. We also selected the top 300 genes that are known to
have a role in brain tumors to improve the quality of our classification. The gene expression data for
normal control samples with gene expression data of individuals not diagnosed with glioma, were
obtained from GTEx in TPM format. The controls obtained had around 1400 samples, and these
were undersampled according to the classification study, in order to address the class imbalance.

2 Methods

2.1 Data Preprocessing

Glioma gene expression data was downloaded using the gdc-client on TCGA. The samples belonged
to three different projects and therefore we chose to use TPM counts. TPM counts are normalized for
a sample and hence can be used as a comparison between projects, which may have different protocols
for producing reads. The data downloaded was mapped STAR counts for genes and was in separate
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files for each sample. These were merged together and only the TPM values were chosen. Labels
were created using the provided clincal data. Tissue-matched normal controls were downloaded
from GTEx portal, and were avaliable as log2(TPM + 0.001), therefore the cancer dataset was also
transformed to log2 values. After this we only selected the top 300 genes reported to be heavily
mutated in gliomas. Features that had zero counts over all samples were removed. Also, those who
had zero counts in a particular project were also removed. The remaining features were scaled to
zero mean and unit variance for final classification. At the end we were left with 575 samples and 90
features

2.2 Gaussian Naive Bayes

Starting with understanding Naive Bayes, it is a generative model that associates a particular finite,
discrete label to some problem description. On top of this, in this model, we assume that the features
that describe this problem are not dependent on each other. For example, if we want to observe how a
particular phenomenon P is influenced by gene G1 and gene G2, then even if the expression of G1
influences G2 or vice-versa, we consider each of the expression as independently contributing to
the probability of P occurring. Backed by the Bayes theorem, the posterior probability of an event
being labeled as belonging to a particular class is given as: P (c|x) = P (x|c)P (c)

P (x) , where P (c|x)
is the posterior probability, P (x|c) is the likelihood of the event occurring if it belonged to that
particular class label c, P (c) is prior probability for the class label, and P (x) is the prior of the
predictor. Calculating likelihood for each combination of features as P (x1, x2, x3, .., xn|c) is difficult.
Even if we have 2 possible outcomes of each feature x, then we would have 2n parameters in our
joint distribution table that will need calculation. Applying our naive assumption here changes the
form as P (x1, x2, x3, .., xn|c) = P (x1|c)P (x2|c)..P (xn|c), which drastically reduces the number
of parameters to 4n now, which is much more computation-friendly. This is the rationale behind why
we assume this sort of conditional independence between features and the reason behind why we call
it "naive".

The above formalism assumes discrete-valued or categorical feature vectors of samples, that make
use of a Bernoulli distribution to estimate the likelihood. Now, if we want to extend this logic to
features that have continuous values, we simply exchange the likelihood function to a Gaussian
distribution, by making the assumption that each feature conforms to a normal distribution, having
no co-variance between features themselves. Each feature for every class has a distinct mean and
variance that is computed as the parameters of the training data. This is made use of to evaluate
the probability of a test variable falling into the Gaussian characteristics of that particular feature,
following which an MLE or MAP estimation can be performed depending on the likelihoods obtained
for each class. In our project, we define the expression of each gene as a feature, and the individuals
or patients as samples that make up the feature vector space. These form the inputs in this project’s
self-implemented Gaussian Naive Bayes model.

2.3 K-Nearest Neighbour

K-Nearest Neighbour (k-NN) is a supervised machine learning algorithm used for classification. It is
a very widely used classification method for real life scenarios as it is a non-parametric method and
makes no prior assumption about the data, it is easy to implement and is a very efficient classifier.
In k-NN a new test data is classified as the majority votes based on the K-nearest neighbors, where
neighbors are defined as the samples with the smallest Euclidean distance ||Xi −X0||2, where Xi is
the training data and X0 is the test data point that has to be classified.

k-NN was self implemented in this project. A binary classifier was used to classify the samples
into cancer versus non cancer samples and between Glioblastoma versus Oligodendroglioma and
Astrocytoma, i.e., low grade versus high grade tumors. Multi-class classification was performed to
classify the three subtypes of gliomas.

The best K value must be chosen such that it accurately captures and classifies the data. If K is too
small it often becomes too sensitive to noise and if it is too high, all new samples will get classified
into the same class thus there will be too much smoothing.

Best K for each experiment was chosen by calculating the accuracy for K in range 1− 10 for every
experiment and selecting the value of K with the highest accuracy in each case. 5-fold cross-validation
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was then performed using the best K to evaluate the performance of the model in terms of Accuracy,
Precision, Recall and F1 scores.

2.4 Logistic Regression

Logistic regression is one of the most widely used classification methods in biology and for cancer
classification. The goal of logistic regression is to classify a given input into binary classes, example
a person has cancer or does not have cancer. It uses a sigmoid funtion to map an input to a class by
assigning a weight to each input feature that represents its importance in classification. A stochastic
gradient descent algorithm was used to minimize the loss function for random initializations for each
training sample. The hyperparameter alpha was set to 1.25 for 10, 000 iterations.

h(x) = 1
1+e−wT x

Logistic Regression was implemented without any packages for this project A binary classifier was
used to distinguish between normal and glioma samples, and between low grade and high grade
gliomas. As logistic regression is inherently a binary classifier, we used one-vs-all strategy for
multi-class output. We created a one-hot vector vector where the correct class was assigned the value
1 and rest were assigned the value 0 for multiclass classification. The multinomial logistic classifier
uses a generalization of the sigmoid, called the softmax function.

We also used L2 regularisation to prevent over fitting results in our model. L2 regularization
corresponds to assuming that weights are distributed according to a Gaussian distribution with mean
µ = 0. The tuning parameter lambda (λ) was set to 0.01 to obtain the best results.

J(w) = 1
m

∑m
i=1 Cost(h(xi), yi) + λ

2m

∑n
j=1 w

2
j

2.5 Support Vector Machine

Support Vector Machines or SVM is a supervised machine learning classification algorithm. It aims
to classify objects by finding a hyperplane that maximizes the margin between the two classes. After
this training, the test examples are mapped into the space and predictions are made to classify them as
belonging to one group or the other depending on which side of the hyperplane they belong to. Albeit,
this case is for a linearly separable data. In order to implement SVM for non-linearly separable
classes, the feature space is transformed to a higher dimensional space, where it becomes easier to fit
the hyperplane as a decision boundary between classes. This is the basis for the ’kernel trick’ in SVM.
In this project, a built-in implementation of a kernalized SVM was employed under the ’scikit-learn’
module. Radial basis function (RBF) was chosen as the function for the kernel trick as we expect
the data to not be linearly separable. As SVM is not prone to outliers in classes, we expect SVM to
perform best.

3 Results

All four classification methods were implemented after performing a dimensionality reduction on the
number of genes using PCA. This was followed by a 5-fold cross validation, comparing the results of
each classifier.

3.0.1 High performance metrics observed for Glioma vs Control classification:

To start the series of experiments, a simple binary classification of patients with Glioma and without
Glioma was performed. A high separability of the two classes was observed with the help of a scatter
plot of the first two dimensions from the results of PCA (Fig. ??). The performance across LR, SVM
and K-NN was consistent at 100% accuracy. This was followed by GNB that 94% accuracy. The lower
performance for GNB is suspected to be because of the assumptions of conditional independence
between genes, and normal distribution for gene expression that were made, which, in reality, may
not be the case. The performance metrics are summarized in Table 1.

4



Table 1: Performance metrics of the 5-fold cross validation of Glioma vs Normal classification
Classifier Accuracy Precision Recall F1 Score

k-NN 100% 100% 100% 100%
GNB 94% 94% 94% 94%
LR 100% 100% 100% 100%
SVM 100% 100% 100% 100%

3.0.2 Decent performance on classification of the Glioma subtypes:

The classification of the subtypes attained the highest accuracy of 86% in the case of SVM, followed
by LR (82%), K-NN (76%) and GNB (72%). SVM outperformed other classifiers in terms of
precision (87%) and recall (85%) as well. The performance metrics is summarized in Table 2. A
quick observation of the scatter plot of the first two dimensions from PCA (See Fig. ??) reveal an
overlap between two subtypes - Astrocytoma and Oligodendroglioma. Both these subtypes are of
lower grade Glioma, often associated with benign cancers, and this was suspected to be a reason for
the low separability between the two classes. This formed the motivation to classify between lower
grade benign (Astrocytoma + Oligodendroglioma) and higher grade malignant (Glioblastoma).

Table 2: Performance metrics of the 5-fold cross validation of classifying the three subtypes of
Glioma

Classifier Accuracy Precision Recall F1 Score

k-NN 76% 76% 75% 75%
GNB 72% 72% 72% 71%
LR 82% 81% 81% 81%
SVM 86% 87% 85% 85%

3.0.3 Better performance observed in classifying benign vs malignant:

By binning Astrocytes and Oligodendroglioma under one class (benign) and classifying it against
Glioblastoma (malignant), we were able to better separate between the two classes in our PCA plots
(See Fig. 1c), which resulted in better performance across all classifiers (See Table 3). This could
indicate that differential genes between Astrocytes and Oligodendrocytes seem to be much lesser
when compared to the differential genes between each of these two subtypes and Glioblastoma. In
fact, a quick survey of literature reveals that the gene expression profiles seem to significantly overlap
across these two subtypes[10].

Table 3: Performance metrics of the 5-fold cross validation of classifying benign vs malignant
Classifier Accuracy Precision Recall F1 Score

k-NN 94% 92% 94% 93%
GNB 83% 81% 81% 81%
LR 93% 92% 92% 92%
SVM 95% 95% 94% 94%

3.0.4 Sanity Checks - Separability of each Glioma subtype from Control samples:

As the final leg of our project, sanity checks were conducted to test the classifier for its ability
to distinguish between the cancer sub-types as well as distinguish them from the non-cancerous
samples. The PCA plots (Fig. 1d- 1e) produced much more separable clusters, as expected, and the
overall performance of all metrics increased. This check was done for both cases - (a) Astrocytoma
vs Oligodendroglioma vs Glioblastoma vs Control (See Table 4), and (b) Benign vs Malignant vs
Control (See Table 5).
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Table 4: Performance metrics of the 5-fold cross validation of classifying all three Glioma subtypes
and Control samples

Classifier Accuracy Precision Recall F1 Score

k-NN 92% 89% 89% 89%
GNB 77% 77% 77% 76%
LR 84% 82% 82% 82%
SVM 89% 89% 88% 88%

(a) (b)

(c) (d)

(e)

Figure 1: Scatter plot of genes with the first two dimensions from PCA analysis: (a) Glioma vs
Control case, (b) Three Glioma subtypes case, (c) Benign vs Malignant case, (d) Sanity check 1:
Three subtypes and Control case, (e) Sanity check 2: Benign vs Malignant vs Control case
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Table 5: Performance metrics of the 5-fold cross validation of classifying benign vs malignant vs
control

Classifier Accuracy Precision Recall F1 Score

k-NN 96% 94% 95% 95%
GNB 87% 86% 88% 87%
LR 94% 94% 94% 94%
SVM 97% 96% 96% 96%

4 Discussion & Conclusion

The overall best classifier for this experiment turned out to be SVM. Although, it seems like an
expected result since we can observe a clear margin between classes in our PCA plots. k-NN and LR
follow behind SVM, but by themselves they seem to exhibit decent classification performance metrics.
An interesting observation to note would be that k-NN and LR seem to have comparable metrics in
all analysis except the case where we classify between the three subtypes. This notable difference
between the performance of k-NN and LR could be because k-NN depends on how close each of the
data points in a class are to a test data point, while LR depends on whether the two classes as a whole
are linearly separable or not. We observe a lot of overlap between the data points of Astrocytoma and
Oligodendroglioma, despite which as a class, they appear somewhat linearly separable. We suspect
this could be a reason for the lower classification metrics in k-NN but not in LR. Finally, GNB and
its assumptions of conditional independence and normal distribution of gene expression leads to the
classifier having subpar results compared to the other classifiers. As a rationale behind this, if we
consider two features which are strongly correlated then in the case of GNB, both these features
contribute equal influence over the probability distributions, thereby increasing both their importance
in classification. By contrast, other classifiers seem much more suitable for correlated features as
they either adjust assigning the weights to each feature (in case of SVM and LR) or just find the class
of the nearest data points without any assumptions (in case of k-NN). By this logic, the SVM, LR
and k-NN are definitely the better contenders.

As such, we evaluated the classification of Glioma subtypes using four commonly used classifiers. It
would be interesting to observe how other complicated models like Feedforward Neural Networks
perform with the data at hand. Another likely goal could be to expand on the feature selection or
dimensionality reduction methods and conduct a cross-study with the "most important" genes from
these techniques that help run the classification.
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