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1 Introduction

Identifying transcription start sites (TSS) is a critical step in understanding gene regulation, as they
mark the initiation points of transcription, where DNA is transcribed into RNA. Accurate TSS
identification enables researchers to unravel complex gene regulatory networks and can provide
valuable insights into various biological processes, diseases, and potential therapeutic targets [8].

In this project, our aim is to explore the latest advancements in TSS modeling and evaluate the efficacy
of these models. We recognize that each of these models is designed to work with specific data types.
Therefore, we plan to enhance the predictive power of these models by integrating multiple data
types such as CAGE-seq, RNA-seq, ChIP-seq, and DNase-seq. Our approach will be integrative, and
we will develop a pipeline that incorporates the strengths of each data type, enabling us to build a
comprehensive and robust model for the prediction of TSS.

2 Background

Predicting TSSs is a challenging task due to the presence of numerous promoters and other regulatory
elements in the genome, as well as variations in transcription initiation patterns across different
cell types and conditions [1]. Computational methods for TSS prediction have been developed, but
their accuracy can be limited by factors such as insufficient training data and the complexity of the
genomic landscape [10].

Despite these obstacles, advances in high-throughput sequencing technologies and computational
approaches have led to improvements in TSS prediction, emphasizing the importance of this research
area in advancing our understanding of gene regulation and its implications for human health [2].
As we continue to refine these techniques and expand our knowledge of the genome, the ability
to accurately predict TSSs will become increasingly valuable in both basic research and clinical
applications.

3 Data Sources

Below is a list of available database containing various high-throughput sequencing data with
annotated TSS and CAGE information to enable the development of the computational models and
the progression of our project:

• FANTOM5: The FANTOM5 project generated a comprehensive atlas of CAGE profiles
across various cell types and tissues.

• ENCODE: The ENCODE project has generated a large amount of CAGE data as part of its
efforts to annotate the human genome.

http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/
https://www.encodeproject.org/data-standards/annotations/cage/


• GEO: The Gene Expression Omnibus (GEO) is a public repository for gene expression data,
which will have board data including TSS.

• ArrayExpress: ArrayExpress is a public repository for gene expression data.

• UCSC Genome Browser: The UCSC Genome Browser provides a comprehensive view of
the genome, including annotated TSSs.

• RefSeq: The RefSeq database is a comprehensive collection of annotated genomic sequences,
including information on TSSs.

• DBTSS: The DataBase of Transcriptional Start Sites (DBTSS) provides information on
TSSs for human and mouse genes.

4 Softwares & Algorithms

Research studies focused on predicting transcription start sites (TSS) have traditionally relied on
CAGE-seq data due to its specificity for identifying TSS. However, the noise and complexity of the
human genome can present challenges when working with CAGE-seq data. With the emergence
of machine and deep learning techniques, several recent studies have leveraged these approaches
to improve TSS prediction. The following models from recent papers represent examples of such
efforts:

• ADAPT-CAGE [5]: This novel machine learning model utilizes an unsupervised learning
approach to identify TSS. The authors report that the model was able to perform better than
many of the older and more recognized models like Paraclu [4] and Reclu [9].

• DeepTSS [6]: This method makes use of Convolutional Neural Network that takes DNA
sequence, information of the DNA structure and evolutionary conservative features as input
to predict TSS.

• DeeReCT-TSS [12]: Another deep learning approach that makes use of cponventional
RNA-seq and DNA sequence data to predict TSS.

Comparing these recent findings would be valuable in providing up-to-date insights, as opposed to
older studies which have already been explored in the papers mentioned above.

Apart from these algorithms, since we might work with both RNA-seq and CAGE-seq data, we would
need pre-processing techniques like STAR [3] or HISAT2 [7] that helps to align reads from RNA-seq
data to a reference genome, and peak-calling techniques like MACS [11] for CAGE-seq data.

5 Questions about the project & Future Goals

5.1 Questions

Q1: Is it possible to obtain a shared outcome across various algorithms and use that to reassem-
ble complete transcripts where we could then potentially juxtapose these findings with
transcription assembly tools such as StringTie and Cufflinks?

Q2: How does the variability of the TSS region compared to other promoter elements impact the
accuracy and effectiveness of predictive models?

Q3: What specific factors contribute to the low performance of some computational methods in
predicting TSSs/promoters, and how can these factors be addressed to improve prediction
accuracy?

Q4: Are there any consistent patterns or unique features in the composition of subsequences
around TSSs that can be leveraged to improve model performance across different genomes?

Q5: What is the role of information content in measuring the variability of TSS regions, and how
can this information be incorporated into predictive models to enhance their performance?
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5.2 Future goals

The following are potential topics for future exploration. In this project will focus on investigating
some of these areas:

Enhancing prediction accuracy: Improve the performance of computational methods by addressing
the factors that contribute to their low accuracy and developing new strategies for better TSS/promoter
identification.

Understanding TSS variability: Investigate the greater variability of TSS regions compared to other
promoter elements, using measures such as information content, to gain insights into the mechanisms
driving this variability.

Expanding model generalizability: Examine the relationship between prediction accuracy and the
length of subsequences across different genomes, such as human, rat, and mouse, to develop models
that can be applied more broadly and effectively across various organisms.

Integrating multi-omics data: Incorporate additional types of data, such as epigenomic and tran-
scriptomic information, to enhance the predictive power and comprehensiveness of the models.

Comparing with transcription assembly tools: Assess the performance of TSS prediction mod-
els against transcription assembly tools like StringTie and Cufflinks to identify the strengths and
weaknesses of each approach and inform the development of more effective methodologies.

6 Team Roles

Program manager: Wrootchit Mishra

Technical lead: Mirudhula Mukundan

Lead technical writer: David Luo

Communications lead: Xueke Jin

Q & A lead: Every group member

References

[1] ABEEL, T., SAEYS, Y., BONNET, E., ROUZÉ, P., AND VAN DE PEER, Y. Generic eukaryotic
core promoter prediction using structural features of dna. Genome Research 18, 2 (2008),
310–323.

[2] DJEBALI, S., DAVIS, C. A., MERKEL, A., DOBIN, A., LASSMANN, T., MORTAZAVI, A.,
TANZER, A., LAGARDE, J., LIN, W., SCHLESINGER, F., ET AL. Landscape of transcription
in human cells. Nature 489, 7414 (2012), 101–108.

[3] DOBIN, A., AND GINGERAS, T. R. Mapping rna-seq reads with star. Current protocols in
bioinformatics 51, 1 (2015), 11–14.

[4] FRITH, M. C., VALEN, E., KROGH, A., HAYASHIZAKI, Y., CARNINCI, P., AND SANDELIN,
A. A code for transcription initiation in mammalian genomes. Genome research 18, 1 (2008),
1–12.

[5] GEORGAKILAS, G. K., PERDIKOPANIS, N., AND HATZIGEORGIOU, A. Solving the tran-
scription start site identification problem with adapt-cage: a machine learning algorithm for the
analysis of cage data. Scientific Reports 10, 1 (2020), 877.

[6] GRIGORIADIS, D., PERDIKOPANIS, N., GEORGAKILAS, G. K., AND HATZIGEORGIOU, A. G.
Deeptss: multi-branch convolutional neural network for transcription start site identification
from cage data. BMC bioinformatics 23, 2 (2022), 1–17.

3



[7] KIM, D., PAGGI, J. M., PARK, C., BENNETT, C., AND SALZBERG, S. L. Graph-based
genome alignment and genotyping with hisat2 and hisat-genotype. Nature biotechnology 37, 8
(2019), 907–915.

[8] LENHARD, B., SANDELIN, A., AND CARNINCI, P. Metazoan promoters: emerging charac-
teristics and insights into transcriptional regulation. Nature Reviews Genetics 13, 4 (2012),
233–245.

[9] OHMIYA, H., VITEZIC, M., FRITH, M. C., ITOH, M., CARNINCI, P., FORREST, A. R.,
HAYASHIZAKI, Y., AND LASSMANN, T. Reclu: a pipeline to discover reproducible transcrip-
tional start sites and their alternative regulation using capped analysis of gene expression (cage).
BMC genomics 15, 1 (2014), 1–15.

[10] PONGER, L., AND MOUCHIROUD, D. Cpgprod: identifying cpg islands associated with
transcription start sites in large genomic mammalian sequences. Bioinformatics 18, 4 (2002),
631–633.

[11] ZHANG, Y., LIU, T., MEYER, C. A., EECKHOUTE, J., JOHNSON, D. S., BERNSTEIN, B. E.,
NUSBAUM, C., MYERS, R. M., BROWN, M., LI, W., ET AL. Model-based analysis of chip-seq
(macs). Genome biology 9, 9 (2008), 1–9.

[12] ZHOU, J., ZHANG, B., LI, H., ZHOU, L., LI, Z., LONG, Y., HAN, W., WANG, M., CUI, H.,
LI, J., ET AL. Annotating tsss in multiple cell types based on dna sequence and rna-seq data
via deerect-tss. Genomics, Proteomics & Bioinformatics (2022).

4


	Introduction
	Background
	Data Sources
	Softwares & Algorithms
	Questions about the project & Future Goals
	Questions
	Future goals

	Team Roles

